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Integration of machine learning algorithms for intrusion detection in IoT networks 

 
Abstract: The Internet of Things (IoT) is a powerful technology transforming many aspects of our lives, 
from how we connect and work to how we receive healthcare and manage the economy. IoT holds 
promise for enhancing life across diverse settings, from urban environments to educational institutions, 
through task automation, productivity enhancement, and stress reduction. As new threats and 
vulnerabilities emerge, the old ways of securing IoT devices are no longer sufficient. The future of secure 
IoT systems relies on machine learning and deep learning optimised for efficiency. To ensure robust 
security in constantly evolving next-generation IoT systems, we need to harness the power of artificial 
intelligence, particularly machine learning and deep learning solutions. To achieve this vision of constantly 
adapting security for next-generation IoT, the authors must create new methods that guarantee the 
highest levels of security within the entire IoT infrastructure. The study subject is detection systems for 
intrusions into IoT infrastructure and compromised IoT devices based on machine learning algorithms. 
The study object is a machine learning model that will detect anomalies in an IoT network's behaviour 
and identify patterns that indicate normal behaviour and deviations that may signal an intrusion. The 
study aims to enhance the security of IoT networks by developing effective and efficient intrusion 
detection systems using machine learning techniques. The study used scientific methods such as data 
collection and preprocessing, algorithm selection and development, model training and evaluation, 
experimentation and analysis, scalability and efficiency testing. The authors used the works of such 
scientists and researchers as A. Géron, N. Sengupta, R. Vinayakumar, S. Sarwar, and Wang Meng. The 
study investigates security mechanisms for understanding attacker behaviour in the realm of the IoT. This 
could be a significant step forward in fortifying IoT security. This approach to securing IoT devices relies 
on machine learning to analyse the data traffic these devices produce during communication. 
Additionally, this paper proposes incorporating machine learning methods to enhance honeypot 
operation by integrating them into the lambda function’s design. Machine learning is becoming 
increasingly popular across many fields because it often performs better than traditional rule-based 
approaches. While fully automated cyber security detection and analysis using machine learning is 
appealing, it is essential to carefully assess how well machine learning works in this area. The authors 
offer an analysis tailored for security professionals, focusing on utilising machine learning techniques to 
develop a honeypot for detecting intrusions. 
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Abbreviations: 
𝐴𝐴𝐴𝐴 is artificial intelligence 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is AWS IoT security baseline 
𝐴𝐴𝐴𝐴𝐴𝐴 is artificial neural networks 
𝐴𝐴𝐴𝐴𝐴𝐴 is application programming interfaces 
𝐶𝐶𝐴𝐴𝐴𝐴 is convolutional neural networks 
𝐶𝐶𝐴𝐴𝐴𝐴 is cyber-physical systems 
𝐶𝐶𝐶𝐶𝐶𝐶 is common vulnerabilities and exposures 
𝐷𝐷𝐷𝐷 is deep learning 
𝐷𝐷𝐴𝐴𝐴𝐴 is deep neural networks 
𝐷𝐷𝐷𝐷𝐴𝐴 is denial of service 
𝐷𝐷𝐷𝐷 is decision trees 
𝐻𝐻𝐴𝐴𝐻𝐻 is high interaction honeypot 
𝐻𝐻𝐶𝐶𝐻𝐻 is hardware virtual machine 
𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴 is infrastructure as a service 
𝐴𝐴𝐷𝐷 is device identifier 
𝐴𝐴𝐷𝐷𝐷𝐷 is internet of things 
𝐾𝐾𝐴𝐴𝐴𝐴 is K-nearest neighbour 
𝐷𝐷𝐴𝐴𝐻𝐻 is low interaction honeypot 
𝐷𝐷𝐴𝐴𝐷𝐷𝐻𝐻 is long short-term memory 
𝐻𝐻𝐴𝐴𝐻𝐻 is medium interactive honeypot 
𝐻𝐻𝐷𝐷 is machine learning 
𝑂𝑂𝐷𝐷𝐴𝐴 is over the air 
𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴 is platform as a service 
𝑅𝑅𝑅𝑅 is random forest 
𝑅𝑅𝐷𝐷 is reinforcement learning 
𝑅𝑅𝐴𝐴𝐴𝐴 is recurrent neural networks 
𝐴𝐴𝐶𝐶𝐻𝐻 is support vector machine 
𝑋𝑋𝑋𝑋𝐴𝐴𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋 is extreme gradient boosting. 
 

Introduction 
The world is becoming increasingly “smart” as the IoT turns ordinary objects into portals 

to the digital world. The network of IoT physical objects equipped with sensors, software, and 
other technologies can collect, process, and exchange data over the Internet. IoT is currently 
proliferating. As these networks expand and become more complex, so does the range of their 
capabilities. IoT is already used in various areas, from household appliances that automatically 
order products to sophisticated industrial equipment that optimises production (Abdallah Wasan, 
2023). 

The evolution of IoT technologies has made them a force that spans many industries and 
is no longer new. Sensors, automation, networks, data collection, and analytics, like miniature 
information processing devices, are all components of this evolution. A combination of 
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technologies, such as sensors, automation, networks, data collection, and analytics, like miniature 
information processing devices, is the basis of this evolution. Incorporating these components 
into various objects results in the creation of intelligent vehicles, drones, instruments, and other 
machines. Security and privacy concerns can arise due to the variety of IoT devices and CPS. 
This problem is becoming more acute due to the growing dependence on IoT in areas such as 
online shopping, banking, education, and business (Liang & Kim, 2021; Sengupta, 2019; Salau et 
al., 2022). 

Using communication protocols, the Internet of Things is a network that allows objects to 
be connected. Connecting IoT nodes to the Internet has been made possible through multiple 
protocols, such as TCP/IP using the MQTT queue message transport protocol, Modbus TCP, 
and LoRaWAN technologies (Kasongo, 2021). Communication protocols incorporate safeguards 
to protect against various types of threats, such as data theft, brute-force attacks, port scanning, 
DoS and DDoS attacks, MITM, R2L, and probing attacks. There are two types of IoT attacks: 
user root (U2R) attacks and operating system attacks (Sarwar et al., 2022). 

Detecting cyber threats can be achieved using honeypots and honeynets, providing valuable 
information about attackers’ actions. A honeypot is a device that can attack and potentially steal 
information (Fan et al., 2018). The network becomes a Honeynet when two or more Honeypots 
are deployed. IPS formation can be accomplished by integrating honeypots with firewalls and 
IDS, obtaining complete information about attackers, studying their actions, developing 
strategies to enhance system security, and preventing similar attacks in the future. 

The study subject is detection systems for intrusions into IoT infrastructure and 
compromised IoT devices based on machine learning algorithms. 

The study object is a machine learning model that can detect anomalies in the behaviour of 
an IoT network and identify patterns that indicate normal behaviour and deviations that may 
signal an intrusion. 

The study aims to enhance the security of IoT networks by developing effective and 
efficient intrusion detection systems using machine learning techniques. By achieving these aims, 
the research seeks to advance the security mechanisms available for IoT networks significantly, 
leveraging the power of machine learning to protect against the increasing number of cyber 
threats targeting these environments. 

Based on the set purpose, the following tasks are set: 
− gathering diverse IoT network traffic data, including standard and attack scenarios; 
− training and evaluating machine learning models; 
− comparing different machine learning algorithms and their combinations; 
− evaluating the system in real-world IoT environments. 

The presented work proposes using ML and DL methods to build the lambda function 
through the honeypot intrusion detection method. ML, which can analyse large amounts of data 
and detect patterns, is a promising method for improving intrusion detection systems in IoT 
environments. Adaptive solutions based on data are offered that can identify anomalous patterns 
and behaviour in real time. ML algorithms have demonstrated particularly effective results in 
identifying potential threats owing to the significant amount of data generated by IoT devices 
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(Spitzner, 2020). The quality and significance of the datasets used to train these algorithms 
determine their effectiveness. 

 By combining these scientific methods, our study proposes integrating machine learning 
algorithms to detect intrusions in IoT networks and contribute to developing robust security 
solutions. 

The authors used the works of such scientists and researchers as A. Géron, N. Sengupta, R. 
Vinayakumar, S. Sarwar, and Wang Meng. 

 
Study problem 

The communication protocol defines a standard way for two or more entities to establish 
meaningful interactions, enabling valid, legitimate, and expected behaviour by all involved. In 
the case of IoT, application layer protocols can define how IoT devices exchange information 
and how the devices are managed as part of the IoT platform. Since protocols define the 
fundamentals of expected behaviour, we can identify anomalies (that may be part of malicious 
activity) through dynamic protocol analysis, including payload (content) processing, context, and 
common patterns. data), analyse it, and perform specific processes. analysis can be done. For 
this purpose, various approaches can be implemented, such as traffic analysis, honeypot 
techniques, and protocol analysis of all systems involved in communication. 

 
Honeypot technology 
Honeypot technology is a mechanism that intercepts an attacker’s activities by simulating a 

natural system but placing it in a protected environment. An attacker can reach a honeypot once 
recognised as a natural system or device. Honeypots are implemented in a protected and 
monitored manner so that while the attacker’s information is being recorded, the attacker’s 
activities do not harm the system. The central concept of honeypot technology is that a 
communication protocol running on service (software) acts as a decoy system or trap for 
intruders. The level of interaction can be defined as the range of possibilities a honeypot offers 
an attacker. Generally, there are three types of honeypots in terms of interaction level (Wang, 
2017). 

HIH is essentially a natural system that uses standard protocol implementations. Its main 
feature is that, as a natural system, it allows full interaction with the attacker. However, security 
concerns must be considered as exploits may occur in the real world. Therefore, HIH involves 
monitoring and network control systems that protect the environment during the attacker’s 
activities. IoT platforms can be implemented using XMPP/MQTT/REST HIH honeypots. 

LIH detects attackers by employing software emulation to mimic the characteristics of 
specific operating systems, applications, network services, or protocols on the host operating 
system. This approach offers several advantages. Firstly, attackers operate within a simulated 
environment, reducing the risk associated with real exploitation scenarios. Secondly, the 
emulation provides greater control over the attacker’s actions, allowing for more detailed 
monitoring and analysis of their activities. However, there are also drawbacks to this approach. 
While LIH emulates services or steps within a protocol, it may not fully replicate the design or 
functionality of the targeted applications or protocols. This limitation can affect the effectiveness 
of data collection and interaction with the attacker. Examples of LIH implementations include 
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Dionaea, Honeyd, NetBait, and Kippo. LIH can also emulate IoT devices and interact with 
natural and emulated XMPP and MQTT services. 

MIH. Honeypots provide attackers with more interaction opportunities than low-
interaction honeypots but have fewer features than high-interaction solutions, known as 
medium-interaction honeypots. They may expect certain activities designed to provide 
predetermined responses beyond what a low-interaction honeypot would offer. MIH combines 
features of LIH and HIH, but it can be more complex in design and implementation. The 
proposed IoT honeypot prototype is related to MIH. 

 
IoT application protocols 
Communication protocols establish a consistent method for two or more entities to engage 

in meaningful interaction, ensuring proper and expected behaviour from all parties involved. 
Because there are no universally defined standards for all IoT components, the technologies 
employed by IoT platforms vary in their features. Essentially, any technology that meets the 
connectivity criteria can be utilised. Presently, various companies have developed their unique 
IoT architectures. 

No matter the type of wireless technology employed, the data from end devices can be made 
accessible on the internet through two methods (Wang, 2017): transmitting information to a 
specialised web service or API that can be accessed via the internet, utilising cloud-based 
platforms. 

These web services, APIs, or cloud platforms serve as the database for storing and 
processing data, act as an intermediary node between devices and end-users, and provide APIs 
that enable end-users to monitor and control the devices remotely. 

Numerous application protocols have been identified as suitable for IoT communication. 
These include MQTT, XMPP, AMQP, CoAP, UPnP, JMS, HTTP REST, and DDS. Each 
protocol possesses distinct characteristics and can be applied in various scenarios. Furthermore, 
they can collaborate by being implemented in different segments of an IoT system. Several 
surveys have compared these protocols, assessing their suitability for IoT based on reliability, 
security, and energy consumption. 

Security issues can be considered from three perspectives: protocol flaws, implementation 
issues, and integration vulnerabilities. It is crucial for ensuring robust security in IoT systems. 
When implementing protocols with IoT platforms, leveraging their inherent security 
mechanisms is essential. Table 1 (Wang, 2017) provides a summary of the security mechanisms 
employed by the communication protocols mentioned earlier. 

Security issues can arise during protocol implementation, such as building and installing a 
server, due to development-related factors like bugs, weaknesses, or inadequate validations. 
These issues can introduce vulnerabilities into the overall implementation, potentially leading to 
security breaches. These vulnerabilities may eventually be documented in the CVE database. The 
CVE database maintains a comprehensive list of known vulnerabilities for various software 
products, including operating systems, libraries, frameworks, and open-source and closed-source 
implementations. 

Indeed, various databases maintain a shared list of CVE identifiers, such as CVE Details 
(Vulnerability List…, 2023) and the NVD NIST databases (Merenda et al., 2020). These 
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repositories provide comprehensive information about vulnerabilities, including details about 
the affected vendor, product, time of discovery, vulnerable versions, vulnerability type, 
description, and more. By searching for CVEs associated with IoT-related protocols, developers 
can identify potential exploitation vectors for IoT applications or platforms that utilise these 
protocols. It is crucial for developers to regularly update their systems and implement solutions 
to mitigate the risk of exploitation from known vulnerabilities. This proactive approach helps 
enhance the security posture of IoT deployments and reduces the likelihood of successful cyber-
attacks. 

IoT platforms’ integration of various technologies and protocols makes them susceptible to 
security attacks. These vulnerabilities often emerge when integrating different IoT application 
protocols, signalling potential challenges in IoT security. To address these issues, stakeholders 
can implement various approaches to collect, analyse, and identify threat patterns targeting IoT 
platforms. This proactive stance helps mitigate potential security risks and fosters a more secure 
environment for IoT deployments. 

 
Machine Learning techniques 
Recent academic studies have demonstrated the effectiveness of AI technologies, 

specifically ML, in monitoring cybersecurity (Géron A., 2019). ML’s ability to create a model 
capable of learning the statistical patterns within different datasets enables it to make predictions 
without explicitly coding a set of rules. 

ML is a subset of AI that enables computers to learn without explicit programming. It entails 
crafting a predictive algorithm specific to each problem at hand. These algorithms learn from 
data to recognise patterns and trends, constructing a prediction or classification model. DL, a 
subset of ML, employs multiple layers to extract increasingly complex features from raw input. 
“Deep” in “deep learning” refers to the depth of layers used in data transformation. Many DL 
algorithms rely on ANN (Zhang et al., 2021). 

Constructing ML methods can be computationally demanding when dealing with intricate 
datasets, necessitating significant memory and time resources. Consequently, ML techniques 
must be optimised to function effectively in resource-constrained environments resembling the 
IoT. The premise is that feature reduction can lower the training cost of ML algorithms using a 
given dataset. Subsequently, it introduces an optimisation approach capable of generating a 
lightweight ML technique that consumes minimal memory and execution time while accurately 
distinguishing between attacks and regular traffic on IoT networks (Moustafa et al., 2019). 

Intrusion detection is a binary classification task with one main goal: detecting or classifying 
whether a traffic sample is part of an attack. However, in today’s world of specialisation, with 
more data to analyse and more complex devices in the infrastructure, attacks need to be classified 
in more detail for proper countermeasures and future fixes and workarounds. Binary 
classification alone is insufficient to deal with detected threats properly; a more granular 
classification is required. Therefore, classifying groups of attacks or specific attacks is the task of 
a multi-category problem. 

Machine learning systems can be grouped based on the level and manner of supervision 
they receive during training, with three main classifications: supervised learning, unsupervised 
learning, and reinforcement learning. The supervised classifiers that underwent training and 
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evaluation belonged to five categories (Banaamah & Ahmad, 2022; Shone et al., 2018; Tuna et al., 
2022): DT, RF, CNN, RNN and LSTM. 

Enhancing the resource efficiency of the LGBM technique encourages further exploration 
of additional AI technologies, particularly those based on DNN. Recent studies have highlighted 
the effectiveness of DNN in intrusion detection, surpassing many traditional ML models in 
cybersecurity monitoring. However, a drawback of DNN-based approaches is their demand for 
substantial resources to construct a model capable of achieving superior detection accuracy with 
a multidimensional feature set. 

This challenges training scenarios like edge machine learning, where smart devices can 
process data locally using machine and deep learning algorithms (e.g., federated learning). 
Furthermore, unlike mainstream IT devices, IoT devices have constrained computing resources 
(processing and storage) to ensure maximum data output with minimal energy consumption 
while being cost-effective. Consequently, DNN-based security solutions tailored for mainstream 
IT devices cannot be directly applied for security monitoring in environments with limited 
computing resources. 

This necessity arises from the constraints of IoT resources, such as memory and processing 
power, coupled with the resource-intensive nature of existing AI-driven cybersecurity 
approaches for handling complex multidimensional data. Therefore, the outcomes of this 
research can offer valuable insights to security professionals and industries on implementing 
secure, resilient, and efficient AI solutions in resource-constrained settings. Moreover, other 
cybersecurity researchers can leverage the techniques introduced in this thesis to enhance current 
AI security solutions within IoT network environments. 

 
Literature 

The evolution of technology has brought forth new cyber/physical attack vectors that pose 
significant challenges in identification and assessment. Integrating IoT-enabling technologies 
with air-gapped legacy cyber/physical systems, particularly in expansive and intricate 
environments like critical infrastructures, has rendered assessing risk within these domains 
exceptionally challenging. Even with the utilisation of well-established risk assessment 
methodologies, evaluating the risk in any one of these domains is inherently daunting. 

Vinayakumar et al. (2019) delve into the exploration of DNNs for constructing an adaptable 
and efficient intrusion detection model. This model aims to detect and categorise unplanned and 
unpredictable cyber-attacks within a network, leveraging various freely available cyber 
community malware datasets. Given the dynamic nature of malware attacks, the study aims to 
identify the most effective algorithms for detecting cyber threats. Vinayakumar et al. propose 
the Scaled-hybrid_IDS model, which employs hybrid DNNs to detect network malware. This 
model monitors cyber-attacks at both the host level and network traffic in real-time 
environments. 

To identify an effective machine learning algorithm for intrusion detection or cyberattacks 
within IoT-based intelligent city applications, a machine learning selection framework was 
introduced utilising a bijective soft-set approach and its associated algorithm (Shafiq et al., 2022). 
The Bot-IoT dataset was employed to evaluate this framework. Among the algorithms assessed, 
including NB, BayesNet, C4.5, RF, and RT, the NB machine learning algorithm emerged as the 
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preferred choice for anomaly and intrusion detection of IoT device attacks in intelligent cities. 
This algorithm demonstrated superior accuracy and the time required to build the model 
compared to the other algorithms evaluated. 

Sequeiros et al. (2020) provide an overview of related research concerning attack and threat 
modelling for IoT systems and cloud mobile applications. On the other hand, the authors 
introduce IotCom, an approach to uncover concealed threats. Specifically, the researchers 
investigated multi-app coordination threats capable of initiating infinity activation loops or chain 
coordination events that may result in race conditions and physical wear of a device. They 
conducted static analysis of multiple IoT applications through their platform and identified 
numerous safety violations. 

In their study, Chen et al. (2020) reviewed IoT application cyber-attacks within intelligent 
city environments, specifically addressing detection and classification using deep learning 
algorithms. The authors explored deep learning models, including deep belief networks, 
Boltzmann machines, restricted ones, CNNs, recurrent ANNs, and generative adversarial 
networks for attack detection and classification within intelligent cities. Furthermore, they 
presented several ML-based cyber-attack detection models tailored for IoT applications within 
intelligent city contexts. 

One of the myriad challenges confronting the IoT, which integrates diverse objects into 
networks to facilitate sophisticated and intelligent applications, is safeguarding user privacy and 
thwarting various attacks, including spoofing, DoS, jamming, and eavesdropping. The author 
(Sangra, 2023) examines the vulnerabilities present in IoT systems and explores potential 
strategies to bolster the security of IoT networks, utilising ML techniques such as supervised 
learning, unsupervised learning, and RL. The analysis of data privacy delves into ML-based 
approaches for tasks such as authenticating IoT devices, regulating access to these devices, 
securely offloading data, and identifying viruses. 

 
Materials and methods of research 

This study focuses on deploying honeypots in AWS EC2 and utilising machine learning 
techniques to create a lambda function. The aim is to entice potential cybercriminals to engage 
with these deployed honeypots, thereby gathering substantial data for analysis. Because low-
interaction honeypots are easily replicated, modifying default service banners and settings will 
help to make them more realistic. The main objectives are to monitor harmful intruders’ 
behaviours, assess their origins, accumulate different attack strategies, and collect malware 
samples and payloads. 

When crafting an IoT solution, it is crucial to grasp the potential threats it may face and 
implement defence in depth by incorporating multiple security measures. These measures should 
cover identification, protection, detection, and response to threats. Designing the solution with 
security in mind from the outset is crucial because comprehending how an unauthorised 
individual could potentially compromise the system enables the implementation of appropriate 
mitigations. 

The AISB outlines a collection of security controls that establish a minimum foundation for 
customers to construct secure IoT solutions on the AWS platform. In the AISB solution 
architecture, an IoT device transmits data to AWS IoT Core. This data from the edge device is 
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then forwarded to AWS for tasks such as processing, storage, analytics, and visualisation. In 
addition to telemetry data, AWS IoT Device Defender allows IoT and IoT devices to report 
security events directly to AWS. This event information is merged with cloud-based events to 
pinpoint security misconfigurations, identify anomalies in device behaviour, and alert personnel 
to respond promptly to security events. The principle of operation solution architecture AISB is 
presented in the appendix (Figure 1). 

While deploying honeypots (decoy devices mimicking natural IoT systems seems 
straightforward – just setting up boxes with simulated IoT software – this approach has 
limitations. It might only capture a narrow range of attack data. The longer an attacker interacts 
with a honeypot (a decoy device mimicking an IoT system), the more valuable information we 
gain about their goals and methods. As attackers become more invested in a seemingly actual 
device, the honeypot needs more complexity to maintain the illusion and gather richer intel. 

Given an IoT device's intricate interaction with its environment, an IoT honeypot needs to 
be structured to enable intelligent adaptation to diverse types of traffic. The success of this 
ongoing battle is gauged by the quantity of valuable insights gained relative to the engineering 
effort invested. The authors aim to construct a meticulously designed system comprising a range 
of honeypot devices operating in coordination with a vetting and analysis infrastructure. 

IoT Core Frame. The AWS IoT core services comprise five services responsible for 
maintaining the needs of all IoT devices, connecting to the AWS cloud, managing devices, 
updating OTA, and safeguarding the IoT devices. Within this framework, the TLS 
communication protocol encrypts all communication. Rules facilitate interaction between IoT 
devices and AWS services. 

AWS IoT Core provides security through policies and X.509 certificates, like support for 
MQTT over TLS/SSL. An AWS IoT Core policy is a JSON document encompassing one or 
more statements. These statements consist of three types: effect, which determines whether the 
action is permitted or denied; action, specifying the action permitted or denied by the policy; and 
resource, identifying the resource or resources on which the action is permitted. This policy lets 
devices connect to AWS IoT Core if their client ID is the same as their thing name (a unique 
name assigned in AWS). Additionally, devices can publish data to any topic that starts with their 
thing name. Instead of relying on usernames and passwords, AWS IoT Core uses a more secure 
method for devices to publish data. Devices need to identify themselves with special certificates 
called X.509 certificates. These certificates are unique to each device and are created by AWS 
IoT Core after the device is registered (becomes a “thing”). 

MQTT protocol. At its core, AWS IoT Core relies on a messaging protocol called MQTT 
to communicate with devices. This protocol acts like a middleman, separating the devices that 
send data (publishers) from the ones that receive it (consumers). Devices publish their data, and 
the MQTT broker efficiently routes and delivers the messages to the interested parties. This 
approach keeps things flexible and scalable. 

Rules are analysed, and actions are executed based on the MQTT topic stream. Topics serve 
to identify AWS IoT messages. A message broker assigns topic names and filters, routing 
messages sent via MQTT and HTTP to the Hypertext Transfer Protocol Secure message URL. 

Devices publish data using organised topic names that act like addresses. To receive specific 
data, services subscribe to matching “topic filters”. These filters act like sieves, sorting messages 
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based on their topic names and delivering them only to the relevant subscribed services. Large-
scale IoT deployments can get complex, like those managing farms with thousands of devices. 
To simplify this, AWS offers a “shadow service”. This service creates a virtual representation 
(shadow) of each device in the cloud. In the context of your intelligent livestock system, each 
animal’s sensor would have a corresponding shadow in the AWS cloud. This approach enables 
each utilised device to be accessed and managed distinctly by various services. These 
modifications are enacted through the MQTT protocol or HTTP using the device shadow REST 
API. 

Lambda Frame. AWS lambda functions are short pieces of code that run on demand. Unlike 
traditional applications, they do not require constant server maintenance. They take input, 
process it, and produce an output. These functions can be triggered by various events within or 
outside AWS, making them highly versatile. One key benefit is automatic scaling. Lambda 
functions can handle a surge in traffic without you needing to adjust server capacity manually. 
In contrast to an EC2 instance, a Lambda is designed to run for a single purpose and is only 
meant to run for a short while. Lambda functions require no platform maintenance and scale 
immediately to hundreds of instances. 

Machine Learning Frame. Infrequently accessed data is stored in S3 Glacier (Serverless), 
designed for long-term data archiving. Unlike S3 Buckets, it is not readily accessible and intended 
solely for archived content. If needed, this data can be unarchived and restored to S3. 
Subsequently, it can be effectively utilised within the machine learning framework, where the 
data trains machine learning algorithms for regression or classification predictions. Amazon 
SageMaker handled the interface models' development, training, and deployment. 

In our study, we implemented the most common machine learning algorithms (Wang, 2017) 
to create a lambda function in the AWS IoT security framework to detect multi-vector 
cyberattacks in the IoT: 
• DT; 
• KNN; 
• RF; 
• SVM; 
• XGBoost. 

Architecture for ML inference is presented in the appendix (Figure 2). 
 

Results 
Cloud computing provides on-demand access to computing power and storage using virtual 

machines that can be scaled up or down based on your needs. Cloud computing removes 
limitations on processing power and storage. Applications can access the immense computing 
resources of cloud data centres, eliminating the need for expensive on-site hardware. The 
architecture of honeypots is entirely constructed within the AWS cloud environment. 

This research proposes an architecture built entirely on serverless services offered by AWS, 
such as AWS lambda, Amazon S3, Amazon SNS, Amazon API Gateway, Amazon DynamoDB, 
etc. This allows us to create data pipelines that efficiently handle the large amount of data from 
IoT devices. 
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We set up a virtual server on Amazon’s cloud following T-Pot’s recommendations to run 
the experiment. This server had the processing power and memory of a t3.xlarge instance type. 
The virtual machines used for the experiment ran the Debian 12 operating system on a unique 
virtualisation technology called HVM. The instance had a decent amount of processing power 
with two virtual CPUs (vCPUs), 8 Gigabytes of memory (RAM), and a high-speed network 
connection capable of handling up to 5 Gigabits of data per second. 

The evaluation metrics listed and defined in Table 2 are used to assess the performance of 
feature extraction algorithms and machine learning models. TP, FP, TN, and FN denote the 
counts of True Positives, False Positives, True Negatives, and False Negatives, respectively. 

Experimental results are presented in the appendix (Tables 3; Table 4; Table 5; Table 6). The 
total comparisons of the different MLA efficiencies of detecting attacks on the main IoT Core 
communication protocols such as MQTT, HTTPS, MQTT over WSS, and Hybrid are presented 
in the appendix (Tables 3; Table 4; Table 5; Table 6). The Hybrid connection method means that 
devices connect to AWS IoT Core for management but receive data through other means, such 
as Amazon Kinesis Data Streams, Amazon MSK, Amazon SQS, or Amazon API Gateway. 

 
Discussion 

Cyber-attacks will likely become more common and complex as technology advances and 
creates more data. The importance of cybersecurity is proliferating on the list of priorities for 
governments worldwide. To keep our information safe online, it is essential to be able to spot 
cyber-attacks. These detection systems can find unusual activity and warn people about threats 
so they can take action to protect themselves. 

This research explores how machine learning can be used to build honeypots, being tools 
for detecting cyberattacks. Machine learning and deep learning are becoming popular in many 
areas, including cybersecurity. However, figuring out which techniques work best for 
cybersecurity problems is essential. This thesis explores powerful machine-learning methods for 
building cutting-edge systems that can detect cyberattacks. 

IoT security must rely on machine learning or deep learning models that leverage data 
attributes to be genuinely adequate. To make intelligent choices, the system needs a robust 
learning algorithm that considers both its knowledge of IoT security and the specific task it is 
designed for. 

The more sophisticated IoT and cloud computing become, the more crucial cloud platforms 
become for managing them effectively. Amazon’s AWS cloud platform provides many IaaS 
components, like PaaS offerings. You can combine Amazon’s IoT Core service with their Rules 
engine and DynamoDB storage for robust and efficient storage of data collected from IoT 
devices. 

 
Conclusion 

This research has investigated how effectively honeypots detect cyberattacks in an IoT 
setting. We achieved this by simulating real-world IoT devices and deploying honeypots within 
that simulated environment. Honeypots are decoy computer systems designed with 
vulnerabilities to attract attackers. This clever strategy diverts their attention away from natural, 
critical systems. Honeypots are secret weapons that mimic natural systems and record attacker 
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activity. They allow us to gather valuable information about what attackers are after, how they 
operate, and their tactics. 

This article describes an improvement to honeypots designed for IoT devices using AWS’s 
IoT Core platform. This improvement leverages machine learning to better defend against 
attackers who use similar techniques. We tested our honeypot with a modified Lambda function 
on AWS. The honeypot successfully fooled attacker tools designed to sniff out honeypots and 
even tricked attackers into uploading malicious software. How well machine learning can spot 
multi-pronged attacks on IoT systems depends heavily on the data quality used to train and test 
these algorithms. We examined the feasibility of detecting attacks on IoT infrastructure by 
focusing on IoT’s most commonly used connection methods, including MQTT, HTTPS, 
MQTT over WSS, and hybrid connection methods. 

It is recognised that each attacker adheres to their unique “strategy” to execute an attack 
successfully. Even though attackers have their own styles, their everyday actions can reveal their 
overall objective. Critical infrastructure systems are often targeted with well-known attack 
techniques. These include brute-force attempts to crack passwords, exploiting software flaws to 
take control of devices remotely, and launching malware attacks within the network once a 
foothold is gained. 

To improve how honeypots lure attackers, we will focus on creating more intricate reward 
systems and crafting believable and consistent responses. In the next phase, we will expand the 
honeypot to mimic an even more comprehensive range of IoT devices. We will also deploy these 
improved honeypots across different public cloud platforms. Our primary objective is to assess 
the efficacy of machine learning methods in constructing a lambda function within a honeypot 
architecture to detect cyber-attacks preemptively before widespread deployment across various 
cloud providers. 

We are confident that our research on security solutions based on machine learning and 
deep learning represents a positive stride forward. It is poised to assist fellow academics and 
practitioners in discovering and deploying IoT security solutions in the future. 
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Appendix 
 

 

 

 
  

Figure 1. Solution architecture AISB 

Figure 2. Architecture for ML inference 

Figure 3. Comparison of different MLA 
efficiencies for detecting attacks on the MQTT 

Figure 4. Comparison of different MLA 
efficiencies for detecting attacks on the HTTP 
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Table 1. Security mechanisms of IoT communication protocols 

 
Table 2. Evaluation metrics 

 
Table 3. Modelling results of ML algorithms for detecting attacks on the MQTT 

 
  

Figure 5. Comparison of different MLA 
efficiencies for detecting attacks on the MQTT 

over WSS 

Figure 6. Comparison of different MLA 
efficiencies for detecting attacks on the hybrid 

connection method 
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Table 4. Modelling results of ML algorithms for detecting attacks on the HTTPS 

 
Table 5. Modelling results of ML algorithms for detecting attacks on the MQTT over WSS 

 
Table 6. Modelling results of ML algorithms for detecting attacks on the hybrid connection method 

 
 


